Calculus II	Name:
Study Guide 7	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. The arc length L of the curve y = f(x) from x = a to x = b is given by $L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$.

Consider the curve given by $y = \sqrt{x^3}$ from x = 0 to x = 4, (a) (3 points) Find f'(x).

(b) (4 points) Simplify $\sqrt{1 + [f'(x)]^2}$.

(b) ______ (b) _____ (c) (3 points) Find the arc length of the curve y = f(x) over the given interval.

(c) _____

2. The surface area S generated by revolving the portion of the curve y = f(x) between x = a and x = b about the x-axis is given by $S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx$.

Consider the function $f(x) = \sqrt{9 - x^2}$ and the interval [-1, 1], (a) (3 points) Find f'(x).

(b) (4 points) Simplify $f(x)\sqrt{1+[f'(x)]^2}$.

(c) (3 points) Find the surface area generated by revolving the curve described above by y = f(x) over the given interval.

(c) ____

(a) _____

(b) _____

3. Consider the region bounded by y = x , $y = e^x$, x = 0 , and x = 1 .

(a) _____

(b) (7 points) Find the volume of the solid generated when the above region is revolved about \mathcal{X} – axis. Detailed drawing required.

(b) _____

⁽a) (5 points) Find the area of the above region. Detailed drawing required.

4. Consider the region bounded by $y = \frac{2}{\sqrt{x}}$, y = 0, x = 1, and x = 4.

(a) _____

(b) (7 points) Find the volume of the solid with cross-section in the shape of a semicircle with diameter on the region perpendicular to the x-axis. Detailed drawing required.

(b) _____

5. (4 points) Consider the function $f(x) = \sqrt[3]{x}$ and the interval [-1, 1]. Find a number c in the given interval such that $f(c) = f_{ave}$.

5. _____

⁽a) (7 points) Find the volume of the solid with cross-section in the shape of a square with one side on the region perpendicular to the x-axis. Detailed drawing required.